

Published on Web 07/15/2010

Tandem Frustrated Lewis Pair/Tris(pentafluorophenyl)borane-Catalyzed Deoxygenative Hydrosilylation of Carbon Dioxide

Andreas Berkefeld, Warren E. Piers,* and Masood Parvez

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Received June 17, 2010; E-mail: wpiers@ucalgary.ca

Abstract: The frustrated Lewis pair system consisting of 2 equiv of 2,2,6,6-tetramethylpiperidine (TMP) and tris(pentafluorophenyl)borane $[B(C_6F_5)_3]$ activates carbon dioxide to form a boratocarbamate-TMPH ion pair. In the presence of triethylsilane, this species is converted to a silvl carbamate and the known ion pair [TMPH]+[HB(C6F5)3]-, which recently was shown to react with CO2 via transfer of the hydride from the hydridoborate to form the formatoborate [TMPH]+[HC(O)- $OB(C_6F_5)_3$]⁻. In the presence of extra $B(C_6F_5)_3$ (0.1–1.0 equiv) and excess triethylsilane, the formatoborate is rapidly hydrosilated to form a formatosilane and regenerate $[TMPH]^+[HB(C_6F_5)_3]^-$. The formatosilane in turn is rapidly hydrosilated by the $B(C_6F_5)_3/Et_3SiH$ system to CH_4 , with (Et₃Si)₂O as the byproduct. At low [Et₃SiH], intermediate CO₂ reduction products are observed; addition of more CO₂/Et₃SiH results in resumed hydrosilylation, indicating that this is a robust, living tandem catalytic system for the deoxygenative reduction of CO₂ to CH₄.

The utilization of carbon dioxide as a sustainable and nontoxic C1 feedstock for the production of value-added chemical products such as carboxylic acids or fuels such as methanol and methane is of current interest.¹ The high thermodynamic stability of CO₂ necessitates its catalytic activation and coupling to a thermodynamic driver for efficient conversion. Transition-metal-based catalysts have played a dominant role in CO₂ conversion, but recently, an increasing number of organocatalytic CO₂ reduction schemes have emerged.² For example, N-heterocyclic carbenes (NHCs) reversibly form zwitterionic adducts NHC \cdot CO₂ that are considered key intermediates in the reductive deoxygenation of CO₂ using diphenylsilane as a sacrificial reducing agent, affording CH₃OH upon workup.³

In this context, activation of CO_2 by transition-metal-free "frustrated Lewis pairs" (FLPs)⁴ has led to the development of stoichiometric reductions of CO_2 to CH₃OH. Here, the FLPs form bridging carboxylate species⁵ that can accept hydrogen from ammonia borane⁶ or via a thermally driven, multistep self-reduction in which the key step is a reversible B–H bond addition of hydridotris(pentafluorophenyl)borate to one C=O double bond of CO_2 , affording the formatoborate anion [HC(O)OB(C₆F₅)₃]⁻.⁷ Ultimately, hydrolysis of CH₃O–LA (LA = BX₃ or AlX₃) is required in order to obtain methanol.

Boron-hydrogen bond addition to CO_2 mediated by phosphonium or ammonium borate ion pairs formed via FLP hydrogen splitting thus offers a potential entry point into catalytic CO_2 fixation in the presence of a suitable reducing agent (oxygen acceptor). We have shown that perfluoroarylboranes are excellent catalysts for the reductive hydrosilylation of carbonyl functions⁸ and C-O bonds,⁹ a potentially useful reaction for subsequent steps in the reductive deoxygenation of CO_2 to CH_4 .

Scheme 1

The ammonium hydridoborate ion pair **1** formed by treatment of the FLP B(C₆F₅)₃/2,2,6,6-tetramethylpiperidine (TMP) and hydrogen¹⁰ (32 mM, C₆D₅Br) reacted with CO₂ (2–4 atm) in the presence of Et₃SiH (18 equiv) at 56 °C to afford the previously reported⁷ formatoborate **2** exclusively (see Scheme 1).¹¹ The reaction was monitored by ¹H and ¹⁹F NMR spectroscopy, and integration versus an internal standard (C₆H₅CF₃, 9 mM) revealed that no Et₃SiH was consumed. Thus, although the formation of **2** is reversible,⁷ there does not appear to be sufficient free B(C₆F₅)₃ present under these conditions to activate silane for further reduction of **2**.

Accordingly, we carried out a reaction under identical conditions with an additional 1.0 equiv of $B(C_6F_5)_3$ (relative to 1) present. This resulted in the immediate and complete conversion of **2** back into 1 at room temperature and the appearance of the products of CO₂ hydrosilylation. Further monitoring of the reaction by ¹H and ¹⁹F NMR spectroscopy at 56 °C showed that silane was gradually consumed and that CH₄ along with 2 equiv of (Et₃Si)₂O were formed as the ultimate reaction products. Minor amounts of bis(triethylsilyl)acetal, (Et₃SiO)₂CH₂, (~10%) were also present. Interestingly, 1 and $B(C_6F_5)_3$ were the only boron-containing compounds detectable during the reaction but diminished in favor of a new species, 3, upon complete silane consumption. At the same time, the characteristic signals of HCO₂SiEt₃, {Et₃SiO}₂CH₂, and Et₃SiOCH₃ in C₆D₅Br became evident in the ¹H NMR spectra. Upon addition of further silane equivalents and pressurization with fresh CO₂, these partially reduced intermediates were depleted and methane formation resumed, indicating a "living" catalytic system.

Collectively, these observations suggest that the chemistry depicted in Scheme 1 is operative. Analysis of the ¹⁹F NMR spectra indicated that the coordinated $B(C_6F_5)_3$ in compound 3 is labile in solution.¹² Thus, the equilibrium between **3** and $2/B(C_6F_5)_3$ is rapid and provides a source of free borane to activate the Et₃SiH present via 4, as previously reported.⁸ The fact that neither 3 nor 2 was detected in the reaction mixture in the presence of silane implies that B-H bond addition of 1 to CO_2 is the rate-limiting step. Consequently, the overall rate of silane consumption showed a zeroth-order concentration dependence over four half-lives (~240 min) when the reaction was monitored at 56 °C by ¹H NMR spectroscopy (see Figure S2 in the Supporting Information). As the silane concentration decreased, the concentration of CH₄ increased at a rate one-quarter that of silane consumption while [1] remained constant, as expected. Once 2 was generated, the reaction with $B(C_6F_5)_3$ -activated silane 4 was rapid and eventually produced CH₄ and (Et₃Si)₂O (as shown in Scheme 1) via welldocumented B(C₆F₅)₃-mediated transformations.¹³

In accord with this postulate, the reaction of a 2:1 mixture of 2 and $B(C_6F_5)_3$ (in equilibrium with 3) with Et_3SiH (1.2 equiv vs 2) at room temperature instantly afforded (Et₃SiO)₂CH₂ (57%) along with starting material (42%) and trace amounts of Et₃SiOCH₃ and CH₄, suggesting that the triethylsilylformate intermediate is highly reactive toward 4. Therefore, its production from 2 is critical. Here, the involvement of a silvlium cation to react with anionic 2 greatly enhances its conversion rate in comparison with that for the reduction of 2 with further equivalents of anionic 1.⁷ In other words, silvlium ion transfer to the formate moiety of 2 from 4 is Coulombically favored over hydride transfer from 1 and occurs under much milder conditions.⁷ The reaction of 4 with 2 gives highly reactive HCO₂SiEt₃ but also regenerates 1 for rate-limiting activation of CO₂.

Compound **3** was generated separately by treatment of solutions of 2 with $B(C_6F_5)_3$ and was isolated by slow hexane diffusion into the reaction mixture at -30 °C. Its solid-state structure was elucidated by single-crystal X-ray diffraction, and an ORTEP diagram is shown in Figure 1 along with selected metrical data implying that the negative charge is delocalized over the bridging formate and flanking borane fragments. This compound was proposed by Ashley et al.⁷ as an intermediate in the conversion of 2 to $[H_3COB(C_6F_5)_3]^-[TMPH]^+$ that accepts hydride from 1; here it serves as a reservoir of borane catalyst for hydrosilylation of 2 and subsequent intermediates.

The above experiments were performed with isolated 1, but this can be bypassed simply through the use of a 2:1 mixture of TMP/

Scheme 2

 $B(C_6F_5)_3$ with CO_2 in the presence of silane (Scheme 2). In the absence of Et₃SiH, ion pair 5 was generated and could be characterized by X-ray crystallography.¹¹ As with other complexes of this type, 5,6 CO2 activation is reversible, and small quantities of free borane are accessible to added silane, which rapidly converts 5 into the triethylsilyl carbamate and 1, which in turn becomes available for catalytic reduction of CO₂ to CH₄ as in Scheme 1.

In summary, ammonium borate 1 and $B(C_6F_5)_3$ act in tandem to catalytically convert CO₂ to CH₄ using triethylsilane as the reductant. The rate-limiting step involves transfer of hydride from 1 to CO₂, suggesting that a more nucleophilic hydridoborate might improve the rate of conversion. However, use of the less Lewis acidic borane B(4- $C_6F_4H_{3}^{14}$ resulted in a kinetic profile essentially identical to that obtained for B(C₆F₅)₃ (Figure S3). Ongoing work will explore a range of boranes, amines, and sacrificial reductants aimed at increasing the turnover frequencies on the basis of the mechanistic details uncovered through these detailed spectroscopic studies.

Acknowledgment. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. A.B. thanks the German Research Foundation (DFG) for a postdoctoral fellowship.

Supporting Information Available: Crystallographic data for 3 and 5 (CIF), additional experimental and spectroscopic details, and complete ref 1a. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

- (1) (a) Arakawa, H.; et al. Chem. Rev 2001, 101, 953-996. (b) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975–2992. (c) Jessop, P. G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425–2442. (d) Sakakura, T.;
- (2) (a) Kayaki, Y.; Yamamoto, M.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 4194–4197.
 (b) Gu, L.; Zhang, Y. J. Am. Chem. Soc. 2010, 132, 914–915.
 (c) Nair, V.; Varghese, V.; Paul, R. R.; Jose, A.; Sinu, C. R.; Menon, N. R. S. Org. Lett. 2010, 12, 2653–2655.
 Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48,
- 3322-3325
- Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46-76.
- Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan,
 D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643–6646.
 Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796–1797. (5)
- Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009,
- 48, 9839-9843. (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440-9441. (b) (8)
- Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090–3098.
 (a) Blackwell, J. M.; Morrison, D. J.; Piers, W. E. Tetrahedron 2002, 58, (9)
- 8247–8254. (b) Chojnowski, J.; Rubinsztajn, S.; Cella, J. A.; Fortuniak, W.; Cypryk, M.; Kurjata, J.; Kazmierski, K. *Organometallics* **2005**, *24*, 6077-6084. (c) Thompson, D. B.; Brook, M. A. J. Am. Chem. Soc. 2008, 130, 32-33
- (10) Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Angew. Chem., Int. Ed. 2008, 47, 6001-6003.
- (11) See the Supporting Information for experimental details. (12) ¹⁹F NMR spectra of mixtures of **2** and various amounts of $B(C_6F_{5)3}$ in C₆D₅Br exhibited broad resonances consistent with the presence of 2, 3, and free $B(C_6F_5)_3$ in rapid equilibrium.
- (13) This mechanistic scheme is similar in form to that proposed for a $Zr/B(C_6F_5)_3$ -based catalytic system for the slow hydrosilation of CO₂. See: Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362-12363.
- (14) Ullrich, M.; Lough, A. J.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 52 - 53.

JA105320C